我国医学影像产业现状及发展趋势解析

一、 医学影像的发展历史

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。其最早起源于19世纪,由Roentgen发现X射线后顺利应用于临床为标志将该行业带入了物理成像的时代。在接下来的十几年内分别发明了X成像技术、核磁共振成像技术、超声成像技术、核医学成像技术等,组成了整个医学影像产业。目前医学影像设备的市场规模约占我国整个医疗器械行业的16%,已经成为我国医疗器械市场规模最大的子行业。

表1 医学影像技术发展路径

img1

资料来源:火石创造根据公开资料整理

 

二、 医学影像的分类及应用场景

在目前的医学检测手段中,医学影像数据占据了90%的医疗信息,是疾病筛查和诊治最主要的信息来源,也是辅助临床疾病诊疗的重要手段。目前医学影像的设备可以分为大型影像诊断设备和其他影像诊断设备。其中大型设备主要有数字X线摄影(DR)、计算机断层扫描(CT)、核磁共振(MRI)和核医学类(PET及复合类PET-CT、PET-MR等),小型的影像诊断设备包括超声和内镜等。根据成像原理的不同,各种设备在临床的上的应用也不相同。各类医学影像设备的特点及应用场景如下表显示。

表2 医疗影像设备分类及应用场景

img2

参考资料:《影像诊断学》

 

三、国内医学影像产业的格局

虽然目前国内高端医疗影像市场整体基本被海外巨头所垄断,尤其是数字剪影血管造影(DSA)设备,国产设备的占有率仅在10%以内,技术门槛较高的PET-MR及PET-CT设备,国内产品的竞争力也比较弱。但与此同时,以联影、万东、东软和迈瑞为代表的国产影像设备企业正逐渐开始掌握核心技术,在主机制造方面处于快速成长的阶段,在某些领域逐渐显现出赶超之势。比如以联影、东软为代表的MRI产品、以万东为代表的DR产品以及以迈瑞、开立为代表的超声设备等,部分产品已经跻身世界一流水平,相应的零部件的自产率也在持续上升,各类技术上的突破也给国内影像产业带来了巨大的信心和希望。

同时目前国外巨头的影像设备基本处于一个技术瓶颈期,缺少重大突破,这也给国内的企业提供了一个非常难得的赶超机会。当前国内厂商在主机制造方面已经取得一定的成果,但是在产业链的上游,如原材料(传感器、信号链)及核心组件(球管、探测器、发生器、射频线圈等)的自主率还不够高,性能与国际品牌尚有一定差距,需要研发端进行持续的投入。

img3

图1 国内主要影像设备生产厂商及代表产品

资料来源:火石创造根据公开资料整理

img4

图2 各大影像设备的市场占有率

数据来源:中国医学装备协会

 

四、 医学影像产业的政策推动

由于医学影像设备产业专业度高、结构复杂、是一个产业链长且分散、专业度高、结构复杂的产业,过去国内的影像产业工业基础薄弱,技术沉淀不足,因此导致国内的医学影像市场长期被进口品牌等垄断。为了改善这一现状,提高影像设备产业的创新能力和产业化水平,过去几年国家发布了一系列鼓励和支持高值影像设备的政策。同时将其列为中国制造2025的重要组成部分,充分体现出了国家对这该领域的重视程度。

表3 部分医学影像相关政策列举

img5

资料来源:火石创造根据公开资料整理

 

五、 医疗影像产业的发展趋势

从技术的层面来看,医学影像设备的总体趋势是向更清晰、更快速、更便捷、更安全、更智能的方向发展。因此国内的企业在提升硬件设计制造技术,补全和加强影像设备产业链上下游,提升自主率的同时也要注重诊断智能化方面的发展。

以AlphaGo在围棋界取得的成绩为标志,人工智能在近几年的发展非常迅速。而医疗影像的诊断结果具有格式标准、易于获取和利用等特点,被认为是人工智能在医疗应用中可最快落地的领域之一。利用AI的感觉认知及深度学习的技术,将其应用于医疗影像领域,提高放射科医生诊断的准确率和效率,降低误诊率是医学影像产业的重要发展方向之一,也是我国医疗影像产业迎头赶上国外巨头的契机之一。随着国内政策对高端医学影像的倾斜度不断加强,从2016年开始,AI医学影像领域的热度就在不断上升,越来越多的初创型人工智能公司开始涉足这一领域,其中也不乏一些互联网的巨头,说明无论是资本还是产业内部都看好这一应用的前景。

表4 部分AI医学影像产品及公司

img6

数据来源:火石创造根据公开资料整理

经历了2016到2019年三年的发展,目前 AI医疗影像呈现出了两种发展趋势,一是AI阅片方式更加贴合医生日常的阅片习惯和实际的临床需求,同时也在不断增加识别疾病的种类及器官的部位。另一个是产品功能的纵向延伸,AI除了病灶的诊断以外,可进一步给出放疗、手术等规划来辅助医生诊断。因此AI医学影像的产品目前在放射科医生群体中也得到了相当高的高度认可。在不断解放医生生产力的同时,这种方式也为基层医疗资源不均衡的现状提供了一种解决方案,即通过建设智慧影像平台的方式,使得放射科医生较为缺乏的基层医院也能够开展复杂度高的检查和诊断。

当然目前AI医学影像作为一种弱人工智能的应用,整体还处于较为初级的阶段,在发展的过程中也暴露出来一些比较明显的问题和瓶颈。首先是目前的AI识别病灶的过程基本通过深度学习来进行,即“喂给”设备各种不同的影像的诊断数据,通过深度学习来不断驯化AI软件从而达到机器识别病灶的效果。这种过度依赖数据的方法会存在的一定的隐患,一是数据量要足够大,而不同的病人由于病情的差异,同一病症体现出来的图像特征都有可能发生变化,一旦数据训练的量不够全面时,遇到特殊的病例,则有可能出现误诊的情况。此外,目前的医疗数据缺乏统一的标准,标准化还未提出通用的规则,缺乏人工智能强调的“4V”属性,因此虽然国内的数据量足够的大,但很多时候利用率和价值并不是很大,这都给AI医学影像的实际应用造成了一定的不确定性。

其次,由于现阶段国家对于AI医学影像的产品定位为三类医疗器械,因此目前主流的AI影像软件基本都还处于注册审批阶段,商业化的使用效果还未显现。此外,能否进入医院常规的采购目录也是影响产品商业化落地的一种重要因素。在今年的1月15日,首个进入国家药品监督管理局创新医疗器械审批绿色通道的人工智能医疗影像辅助决策产品——“深脉分数”获得批复,这给众多AI影像产品树立了一个标准,而其商业化落地还有待于市场去检验。

 

六、 总结

目前我国医学影像产业深受关注,尤其是高端的影像设备,国家政策保障力度较大。与此同时,国内厂家的核心技术越来越成熟,产业链也日臻完整,不断地侵蚀海外巨头的市场份额,巨头的技术瓶颈期也给国内企业提供了一个缩小差距的契机。国内AI在医学影像中的应用热潮,也给医学影像的发展提供了一个新的方向,这也许是国内超越国外最有希望的一个领域。在AI医学影像商业化落地方面,深度绑定医院,从AI智能识别辅助诊断的服务中分取相应的收益也许是该产品能够成功落地的方式之一。

 

 

第三篇:AI技术在医学影像中的应用及行业发展现状

火石创造

随着技术飞速发展、医学数据的持续扩增以及硬件设备的不断提升,人工智能和医疗的结合方式越来越多样化。

声明:本文为火石创造原创文章,欢迎个人转发分享,网站、公众号等转载需经授权。

随着技术飞速发展、医学数据的持续扩增以及硬件设备的不断提升,人工智能和医疗的结合方式越来越多样化。目前AI在医疗领域中的落地的应用场景主要有医学影像、智能诊疗、智能导诊、智能语音、健康管理、病例分析、医院管理、新药研发和医疗机器人等,其中在医学影像中的应用最为广泛。

一、影像医学发展现状

医学影像是医生完成诊断的主要依据,通过对影像的分析和比较,从而完成有依据的诊断。但是在实际过程中,往往会存在以下问题:

(1)影像学诊断人才资源紧缺。医疗机构普遍缺乏高水平的影像医师,在疾病诊断时往往会发生同病异影,异病同影等情况。

(2)传统定性分析存在诊断误差。医生普遍擅长定性分析,很多微小的定量变化无法通过肉眼判断,很难做到定量分析。

(3)医生阅片时间长。目前的影像呈现方式为数据和图像,而不是最有效的信息,很大程度上限制了医生的人工阅片速度。

二、AI+医学影像助力疾病诊断

通过引入人工智能可有效解决部分问题,目前人工智能在医学影像领域的应用方向主要以下几类:

1. 影像设备的图像重建

AI可以通过算法的图像映射技术,将采集的少量信号恢复出与全采样图像同样质量的图像,而且使用图像重建技术,可以由低剂量的CT和PET图像重建得到高剂量质量图像。这样在满足临床诊断需求的同时,还能够降低辐射的风险。

2.  智能辅助诊断疾病

(1)智能辅助诊断肺部疾病

国内应用AI+CT影像最为成熟的领域在肺结节的识别上。AI能够有效识别易漏诊结节比如6mm以下实性结节和磨玻璃结节,且准确率在90%左右,同时能提供结节位置、大小、密度和性质等。除此之外,能对肺结核、气胸、肺癌等肺部疾病进行筛查。

(2)智能辅助诊断眼底疾病

目前应用最为广泛的是筛查糖网病。糖网病是常见的视网膜血管病变,也是糖尿病患者的制药致盲眼病,早期往往没有任何临床症状,一旦有症状已错过最佳治疗时机。

我国糖网病患者约2700万,随着人们对糖网病筛查的重视,眼底读片需求增加,但从事眼底医疗服务和研究人员仅800~100人,医疗资源严重匮乏,误诊、漏诊情况较多。将人工智能应用到眼底读片中,进行初步筛查,可大大改善目前糖网病筛查效率。

AI通过对眼底图像的深度学习,可实现对部分眼底疾病,除了糖网病,还有青光眼、老年性黄斑变性、白内障和黄斑裂孔的诊断。

(3)智能辅助诊断脑部疾病

目前脑部疾病的智能诊断包括脑出血、内动脉粥样硬化诊断、颅内动脉瘤诊断和颈动脉易损斑块评估等。

其中,脑出血是神经内外科中高致死致残率的一种难治性疾病。AI+头部CT,基于机器视觉与深度学习技术,可以迅速定位脑出血区域,精确量化出血体积,判断是否存在脑疝,同时,能以秒级速度完成专业要求高、耗费时间长的影像评估,协助医生准确判断,让患者第一时间获得最优治疗方案。

(4)智能辅助诊断神经系统疾病

AI在神经系统疾病里的应用主要包括癫痫、阿尔兹海默症、帕金森病。AI可以将患者的影像数据进行处理分析,并与正常人群组做统计比对,从而计算得到代谢异常的病灶大小、位置等信息,通过认知技术,给出治疗方案的建议以及治疗效果的预测。

(5)智能辅助诊断心血管疾病

AI可以在胸部CT数据基础上,利用深度学习技术和图像处理技术,设计特定算法后评估冠状动脉易损斑块,进行冠心病智能辅助诊断,规划支架手术置入方案等。同时还可以智能诊断主动脉疾病类型、主动脉瘤等复杂疾病。

3. 智能勾画靶区

目前,放疗是肿瘤病人的主要治疗方式之一,而病变器官的正确定位及精准勾画是放疗的基础和关键技术。因此,在放疗之前首先需要对CT图像上的器官、肿瘤位置进行标注,按照传统方法,一般需要耗费医生3~5个小时。

通过应用AI技术可大幅提升效率,AI智能勾画靶区的高准确率能够很大程度避免由于靶区勾画的不准确导致的无效治疗。目前,AI+靶区勾画已经成功运用在肺癌、乳腺癌、鼻咽癌、肝癌、前列腺癌、食管癌和皮肤癌上。

4. 智能判断病理切片

病理切片的判断是一项复杂的工作,往往需要医生具有非常丰富的专业知识和经验,而且即使具有专业经验的医生,也容易忽略不易察觉的细节从而导致诊断的偏差。而将人工智能引入病理病理切片的研究,通过学习病理切片细胞层面的特征,不断完善病理诊断的知识体系是解决读片效率以及诊断准确值的最好的办法。

5. 其他智能辅助诊断方案

人工智能在医学影像中的应用还包括脏器的三维成像、超声辅助甲状腺结节、骨龄分析、骨折智能诊断等。

三、部分AI+医学影像企业及其业务模式

AI+医学影像产品和企业不断涌现,根据火石创造数据库显示,目前国内AI+医学影像企业数量超100家,单笔融资过亿的案例近20起,融资总额超过26亿元。部分公司及其涉及其业务模式见附表:

附表  部分AI+医学影像公司及其业务模式

img7

四、小结

医学影像现已成为人工智能在医疗领域最热门的方向,但在实际应用过程中还是存在一定挑战,例如,数据获取及数据标注问题、缺乏行业标准、注册审批缺乏指导原则、技术创新问题等等。但随着AI相关技术的不断发展,国家相关政策的不断完善,相信AI+医学影像将在未来快速实现商业化。

行业新闻

INDUSTRY  NEWS